IPN Progress Report 42-146 August 15, 2001

Memory-Efficient Recursive Interleaved
Entropy Coding

A. B. Kiely! and M. Klimesh'!

Recursive interleaved entropy coding is a promising new adaptable binary en-
tropy coding technique that offers fast encoding and decoding at high compression
efficiency [1]. However, with the encoding methods presented in [1], the maximum
memory required by the encoder is proportional to the source sequence length.
In this article, we present a new encoding technique, and corresponding decoding
technique, that limits encoder memory usage without limiting the source sequence
length. We illustrate the improvement in compression efficiency over the alternative
memory-efficient technique that partitions the source sequence into smaller blocks.
We present a generalized encoding framework that encompasses both memory-
efficient encoding methods and includes additional variations as well.

[. Introduction

Recursive interleaved entropy coding, introduced in [1], is a novel binary entropy coding technique
that offers the same functionality as arithmetic coding: it accommodates an estimate of the source bit
probability distribution that can be updated with each source bit, and it can achieve arbitrarily small
redundancy at the expense of increasing complexity. In addition, simulation results in [1] suggest that it
has significant speed advantages over arithmetic coding.

The first encoding scheme described in [1], which we refer to as the “basic” encoder, loads the entire
source sequence into memory before further processing occurs. This leads to two potential limitations
that may be unacceptable in some data compression applications:

(1) The maximum amount of memory required by the encoder is proportional to the source
sequence length, which presents obvious limitations in encoding long sequences.

(2) Encoding latency is large since no output is produced until the entire source sequence is
loaded into memory.

Note that neither of the above limitations occurs in decoding—decoder memory use and latency are
both very low.

I Communications Systems and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

The recursive encoder of [1, Fig. 5] could easily be modified to load source bits into memory only as
they are needed to process codewords, but it is always possible that the entire source sequence must be
loaded before any processing can occur. Thus, the above issues are still present in this encoder, although
the average encoding latency and memory use can be reduced somewhat.

A straightforward method of overcoming these encoding limitations is to partition the source sequence
into smaller blocks that are encoded separately. We refer to this as the “partitioning” method of encoding.

In this article we describe an alternative method of memory-efficient recursive interleaved entropy
coding that yields more efficient compression than the partitioning method. We assume throughout that
the reader is familiar with [1].

The key to our technique is the judicious flushing of partial codewords in the encoder. In the basic
encoder, flush bits are added to prevent partial codewords from being left in the encoder at the end of
the encoding process. Here flushing is also used to dislodge partial codewords that cannot be completed
normally because the memory constraint prevents the encoder from loading source bits that might lead
to completion of the codeword.

Note that the addition of the extra flush bits during encoding means more bits must be encoded, and
therefore compression efficiency is reduced. However, with the method we introduce, we will see that this
cost can be quite small.

It is essential for the decoder to recognize bits that were inserted as flush bits during encoding;
otherwise these bits could be mistaken for source bits or for bits that arose from processing codewords,
and decoding would fail. Thus, we must add flush bits in a way that can be recognized by the decoder.
Note that this is not an issue in the basic encoding scheme, since in this case flush bits are simply extra
bits remaining in the decoder after the source sequence has been decoded.

We introduce a method that constrains the encoder to consider no more than M source bits at a time.
That is, source bit i is completely encoded before source bit ¢ + M enters the encoder. We refer to this
technique as “sliding source window” encoding with source window length M. A sliding source window
encoder inserts flush bits less frequently than a partitioning encoder with the same memory constraint
and thus gives better compression. In Section V we present a generalization of the sliding source window
technique that encompasses other memory-efficient variations as well.

For either a sliding source window encoder with source window length M or a partitioning encoder
with partition length M, the maximum memory? needed by the encoder depends on the coder design and
is essentially linear in M.

Il. Encoding

In the sliding source window encoder, as in the basic encoder, bits together with the indices of their
corresponding bins are maintained in encoder memory in a list arranged in order of priority. The sliding
source window encoder processes data in “waves.” During the ith wave, the encoder produces the minimal
number of additional output bits necessary to reconstruct the value of the ith source bit, given that the
output bitstream already includes the information needed to reconstruct the first ¢ — 1 source bits.

We ensure that bits containing information about source bit i do not remain in the encoder when the
ith wave is complete by recording for each bit a freshness index, which acts like an expiration date for

2 We assume that once the encoder calculates the next bit to be transmitted, this bit is not counted in encoder memory
usage, since even if the bit cannot be transmitted immediately, it can often be stored in a separate buffer. In any case,
managing these compressed bits is necessary for any compression algorithm.

the bit. The freshness index of a bit indicates the latest wave during which the bit may be processed.
Wave i is complete when all bits in the encoder have freshness index greater than 7. Freshness indices
are assigned according to the following rules:

(1) The ith source bit, b;, is assigned freshness index .

(2) When bits in a bin are taken to form a codeword, the resulting output bits are all assigned
a freshness index equal to the minimum freshness index of any of the bits that formed
the codeword, excluding flush bits.

A consequence of these rules is that the freshness index of any bit is no larger than the freshness index of
the bit with next highest priority; however, in contrast to the situation with priority values, several bits
may have the same freshness index.? The rules give two properties that can be exploited in the encoding
process:

(1) To determine whether wave i is complete, we need only check that the freshness index
of the first (i.e., highest-priority) bit in the encoder is greater than i.

(2) When we form a codeword, the resulting output bits are all assigned a freshness index
equal to that of the first bit of the codeword.

Note that at any time the freshness indices of bits in encoder memory can take on only M different
values, so we need only store freshness indices modulo M.

During wave i, the encoder has not yet observed source bits b;1ar, bitar41,- -~ Once the wave is
complete, we can load the next source bit, b;1 s, into memory. Often more than one wave will be
completed simultaneously. If after processing wave ¢ the highest priority bit in the encoder has freshness
index @ + £+ 1, then bits b;41, - -, bj1¢ can also be reconstructed from the current output bitstream, and
we can load ¢ new source bits into the encoder.

Sliding source window encoding follows the five priority rules given in [1, Section I1.B]. For convenience,
the encoding algorithms given in [1] abide by a stricter version of the fourth rule:

(4") A codeword cannot be processed unless the last bit in the codeword has higher priority
than all bits in higher-indexed bins.

We also adopt Rule (4') for sliding source window encoding, as it makes encoding much simpler. Note,
however, that in [1] use of this stricter version does not affect the output bitstream, while here the stricter
rule can affect the output bitstream.

The priority rules allow some flexibility in the order in which processing of some codewords is per-
formed, so the specific operations performed during a given wave are not strictly defined.

Flush bits can be added only in the highest-indexed nonempty bin, and only if the priority rules
prevent any other operation from being performed. In other words, we cannot add flush bits if we can
output another encoded bit, load another source bit, or process another codeword.

Figures 1 through 3 outline two different sliding source window encoding procedures that conform to
the priority rules. Both encoders produce the same encoded bitstream. In these figures, and elsewhere,
source bits are numbered from 1.

3 With the section-number-like priority labels described in [1, Section I1.B], the freshness index of a bit is equivalent to the
first number of the priority label.

initialization: clear memory and assign nextbit = 1

repeat
repeat
if one of the following conditions holds, then perform the associated operation:*
(a) if memory is empty or the highest priority bit has freshness index > nextbit — M, then
1. load source bit bpextpit inNt0 memory
2. assign nextbit = nextbit +1
(b) if the highest priority bit in memory is in the first bin, then remove it and output the value of
this bit"
(¢) if a codeword can be formed in some bin (subject to the priority rules, and without adding any
flush bits), then process this codeword
until (none of these conditions holds)

add flush bits as needed to form a complete codeword in the highest-indexed nonempty bin and process
this codeword.
until (all source bits have been loaded and memory is empty)

We can choose the operation arbitrarily from those for which the corresponding condition is satisfied.

bIf the bit with the next highest priority has a different freshness index or if memory is now empty, then this operation
marks the end of a wave. Depending on the encoder implementation, there may be no reason to track the wave number.

Fig. 1. Outline of one implementation of the sliding source window encoding algorithm.

initialization: clear memory and assign nextbit = 1

repeat
repeat
if one of the following conditions holds, then perform the associated operation:®
(a) if memory is empty or the highest priority bit has freshness index > nextbit —M, then
1. load source bit bpextpit iNto memory
2. assign nextbit = nextbit +1
(b) if the highest priority bit in memory is in the first bin, then remove it and output the value of
this bit
until (none of these conditions holds)

if memory is not empty, then
let bitpointer point to highest priority bit in memory
while (bin(bitpointer) # 1)
let bitpointer = MakeCodeword(bitpointer)
until (memory is empty)

21If both conditions hold, then either operation can be performed.

Fig. 2. An alternative implementation of the sliding source window encoding algorithm
using the MakeCodeword procedure of Fig. 3.

MakeCodeword(bitpointer):
thebin = bin(bitpointer)
bitstring = bit(bitpointer)

while (bitstring is not a complete codeword)
if bitpointer points to the lowest priority bit in memory
append flush bits as needed to make bitstring a complete codeword
else
assign bitpointer to the bit with next lower priority
while (bin(bitpointer) > thebin)
bitpointer = MakeCodeword(bitpointer)
if (bin(bitpointer) = thebin)
append bit(bitpointer) to bitstring

delete from memory the bits that formed bitstring
insert the corresponding output bits at the position occupied by the first bit in bitstring
return a pointer to first output bit generated

Fig. 3. The recursive MakeCodeword procedure from [1]. This procedure forms a codeword starting with a given bit
(and if needed forms codewords in higher-indexed bins), producing the corresponding output bits in encoder memory.

The following example illustrates sliding source window encoding.

Example 1. We demonstrate sliding source window encoding using the procedure in Fig. 1 with
M = 3 and coder design C5 of [1]. For convenience, coder design C5 is shown in Fig. 4. Our example
source sequence is 0,0,1,1,1, with these bits arriving in bins 2,4,4, 1,2, respectively. In this example,
we’ll store encoder information in a linked list. Each record in the linked list stores a bit value, the bin
to which the bit is assigned, and the freshness index of the bit. Initially we load the first three source
bits, so the encoder memory is as shown in step (a) of Fig. 5.

In the first wave of encoding, we must generate the encoded information required to reconstruct the
first source bit. Here, the first source bit is in bin 2, and no complete codeword is present in this bin.
However, a complete codeword exists in a higher-indexed bin (bin 4), so we process this codeword by
replacing it with the output bits as shown in step (b). At this point, bin 2 contains a complete codeword,
but our priority rules do not allow us to process it because bin 3 has a bit with higher priority than the
last bit in the codeword. So we process the codeword in bin 3 (which consists of a single bit), producing
the encoder state shown in step (c¢). Finally, we can process a codeword in bin 2; the resulting encoder
state is shown in step (d). The first two bits in memory have freshness index 1 and are assigned to bin 1,
so we output these bits, and the first wave is complete since no bits remain in the encoder with freshness
index 1. We add the next source bit to memory to arrive at the encoder state shown in step (e).

In the second wave of encoding, all bits in the encoder are in the first bin, with the exception of a
single bit in the second bin. Since this bit has freshness index 2, we must process it to complete the
second wave. This bit does not form a complete codeword, so we add flush bits (in this case a single zero
will suffice) as shown in step (f). The resulting codeword is processed, producing the encoder state of
step (g). At this point, the first three bits in the encoder have freshness index 2 and are in the first bin,
so these bits are the next encoder output bits, and we have completed the second wave. The fifth source
bit is loaded into memory.

@ (b) (d) 0 1
0 _-1 0 _-1 1
1 01
1 1 1 1
0__001
1 101 2 101 1
000 0™\ 00 0000 10001

Fig. 4. The 5-bin coder design C5 reproduced from [1]: (a) bin 2, (b) bin 3, (c) bin 4, and (d) bin 5. The first bin
does not have an associated tree. Output bits are shown in boldface, and the corresponding bin indices are in
italics. The input codewords are shown at terminal nodes of the trees.

OUTPUT:

WAVE 1. () (b)

WAVE 2: (e) ®

BE|

WAVE 3: (NO OPERATIONS PERFORMED)

[=1[=][e]

WAVE 4.

WAVE5: (i) [0

[o]

Fig. 5. Example of the sliding source window encoding procedure. In each triple, the first
box indicates bit value, the second box shows bin index, and the third box gives the fresh-
ness index of the bit. (Steps (a) through (j) are discussed in Example 1.)

We observe in step (g) that no bits in the encoder have freshness index 3. Thus, the third source bit
was encoded as part of the first and second waves, and no additional processing is needed to complete
the third wave. If there were a sixth source bit to encode, it would be loaded into memory now.

For the fourth wave, shown in step (h), the only bit with freshness index 4 is already in the first bin,
so we output this bit and the wave is complete.

In the fifth and final wave, shown in steps (i) and (j), we process the codeword formed in bin 2 by the
last remaining bit. The resulting output bits fall in the first bin and become the last two encoder output
bits.

The final output bitstream is shown in the right-hand column of Fig. 5. A

lll. Decoding

The sliding source window decoder reconstructs the source sequence in the same manner as the basic
decoder described in [1], with the key modification that it must routinely identify and delete the flush
bits inserted by the encoder.*

Although the priority rules allow flexibility in the order in which some codewords are processed,
flush bits can be added only if no other encoding operation can be performed. Thus, the wave during
which a codeword containing flush bits will be processed is unambiguous. For each bit in memory, the
decoder calculates the wave number, which we define as the last encoding wave during which the codeword
containing the bit could have been processed. A bit in the decoder with wave number i — M was part of
a codeword formed before or during encoding wave 7 — M, at which time the encoder had no observation
of source bit b;. Consequently, if we are about to decode the ith source bit, any bits in memory with
wave number less than ¢ — M + 1 are flush bits and must be discarded.

At any time during decoding, all the bits in a given bin have the same wave number, so in practice
it’s more convenient to record the wave number for each bin rather than for each bit, and we will refer
to both bits and bins as having wave numbers.

When we reconstruct a codeword in a given bin, the wave number assigned to the bin is equal to
the minimum wave number over all bits in lower-indexed bins, including bits that are used and removed
when the codeword is reconstructed. Here we treat bits in the first bin as having wave number equal to
the index of the source bit being reconstructed. This wave number assignment method is necessitated in
part by the fact that, during encoding, a complete codeword in a bin must be processed before any of
the incomplete codewords in lower-indexed bins can be completed and processed.

This construction ensures that the wave number in the nonempty bins is a nonincreasing function of
bin index. This fact simplifies decoding in two ways:

(1) When reconstructing a codeword in bin j, to calculate the wave number we need only
find the wave number of the highest-indexed nonempty bin with index less than j. Cal-
culation of wave numbers can naturally be included as part of a modified version of the
GetCodeword procedure described in [1].

(2) When searching decoder memory for flush bits to delete, we can start our search at the
highest-indexed nonempty bin, and stop searching once we find a nonempty bin that
does not contain flush bits.

4 The flush bits added after the entire source sequence has been loaded into encoder memory will simply be leftover in the
decoder memory after the source sequence is decoded, so we don’t explicitly need to check for them.

There are several possible methods a decoder can use to identify flush bits to be removed:

Method 1. Modify the GetBit procedure given in [1] to first find and remove any flush bits
from the requested bin. (Note that decoding one source bit can require several
GetBit operations.)

Method 2. Check for and remove flush bits before decoding each source bit. To do this, we
check bins starting with the highest-indexed bin. We ignore empty bins, clear bins
with a wave number equal to i — M (where 4 is the index of the source bit being
decoded), and are finished when we reach a bin with a wave number greater than
i — M. This method may be slow.

Method 3. Keep track of the minimum wave number among the nonempty bins. Before
decoding the ith source bit, if the minimum wave number is equal to i — M, then
clear bins with a wave number equal to i — M (as in Method 2) and recalculate
the minimum wave number. The minimum wave number is also recalculated
when a bin with the minimum wave number becomes empty. Recalculation of the
minimum wave number need not occur often, and this method should be faster
than Method 2, but there is no guarantee that recalculation will be rare.

Method 4. The wave number bound method: Maintain a lower bound on the lowest wave
number of any bit in the encoder. This bound is initialized to be 1 and is not
changed by normal decoding operations. Before decoding the ith source bit, check
whether this bound is equal to i — M. If it is, then check for and remove bits with
wave number ¢ — M (there may not be any), and reset the bound to equal the
actual lowest wave number. Theorem 1 below asserts that the fraction of source
bits for which a recalculation is triggered cannot be greater than B/M, where B
is the number of bins. Note that flush-bit removal occurs only when the wave
number bound is computed, and thus for most source bits only an increment and
compare is needed.

The wave number bound method (Method 4) is probably the fastest choice for a software implemen-
tation of the decoder. Under Method 1, flush bits sometimes remain in decoder memory long after we
are able to identify them; all other methods remove flush bits as soon as they expire. Consequently, all
but Method 1 allow wave numbers to cycle; e.g., after reaching wave M, the next wave number is 1.

We observe in Section VI that the above techniques for identifying flush bits are just as applicable for
the special case of non-recursive interleaved entropy coding [2,3]. An adapted version of the wave number
bound method is quite useful in this case and does not appear to have been previously identified.

Increased decoding speed can also be achieved by modifying the encoder so that several source bits
are loaded at a time, at widely spaced intervals. This idea is developed in more detail and generality in
Section V; for now we remark that with this modification the decoder needs to check for flush bits only
at these widely spaced intervals. Any of the above methods can be used for this check, and the speed of
this operation becomes relatively unimportant.

The following theorem establishes that computation of the bound used in the wave number bound
method occurs relatively infrequently.

Theorem 1. In decoding a source sequence using the wave number bound method, the number of times
the wave number bound must be computed is at most B/M times the number of source bits, where B is
the number of bins and M is the sliding source window size.

In the Appendix, we prove this theorem, and we also show that the fraction of source bits for which
the bound is recomputed can approach B/(M + 1).

IV. Performance

Since compression performance depends on the particular source encountered, it’s difficult to precisely
quantify the improvement that sliding source window encoding offers over the partitioning method. How-
ever, as an indication of this improvement, we have measured the redundancy resulting from both methods
for a source in which the probability-of-zero is uniformly distributed on [0, 1]. Specifically, we generated
sequences of probability values, produced random bits according to these values, and compressed the
sequence using the optimal bin assignment for each source bit given the probability-of-zero. Compression
was performed using the 6-bin coder design of [1, Table C-2] and with various values of the sliding window
or partition length. The results are shown in Fig. 6, along with the performance of the basic encoder,
which achieves essentially the asymptotic redundancy offered by the two memory-efficient techniques.
This figure demonstrates the noticeable performance improvement offered by the sliding source window
encoding method compared to the partitioning method when the same encoder memory constraint is
imposed.?

For large M, the extra redundancy (the increase in redundancy over that of the basic encoder) of
the partitioning encoder decreases as 1/M, while the extra redundancy of the sliding source window
encoder becomes essentially zero at some window length. The window length at which this occurs varies
depending on the number of bins and the distribution of source bits into these bins.

The amount of memory that must be available to an encoder is determined by the coder design and
the window or partition length M. We quantify this amount with the number of bit values that might
be contained in bins in the encoder at one time. (Additional information such as the bin numbers and
freshness indices of the bits may also need to be stored, but for a particular encoder type the memory used
is still essentially proportional to the number of bit values stored.) As examples of memory requirements,
we have determined that coder design C5 and the 6-bin coder design of [1, Table C-2] have maximum

007<\ T T L T T L T T L | T T L | T T T
\ DETAIL
0.06 % PARTITIONING .
07 T rrr[rrr[rrr[Trr] LI L L \ ENCODER
\ 0.05 [~ \/]
— <«
g 06\ SLIDING SOURCE
9 PARTITIONING 0.04 - \u WINDOW ENCODER N
5 05 ENCODER
2 > 0.03 ASYMPTOTIC 7
a REDUNDANCY
5 04 \ SLIDING SOURCE 0.02 i
> \ WINDOW ENCODER <
O - —
> 03} 0.01 ~— o o
Z — o—o0 —
% 0.2 L \\ 0.00 | [L1
o) 25 28 29 210
B ASYMPTOTIC _\
& 0.1 | REDUNDANCY |
0.0 >

WINDOW/PARTITION LENGTH

Fig. 6. Redundancy as a function of window or partition length for the source described in the text, com-
pressed using the 6-bin coder design of [1, Table C-2]. Each point was generated using 500 sequences,
each of length 220 pits.

5 Note, however, that a partitioning encoder has less data to store with each bit than a sliding source window encoder, so
for a given value of M, the partitioning encoder uses slightly less memory.

memory usages of M 4+ 8 and 6M — 3, respectively. For coder design C5, a source sequence that uses
maximum memory is the all-ones sequence assigned to the fifth bin. For the 6-bin encoder, maximum
memory is used by the all-ones sequence with the first bit in the third bin, and all remaining bits in the
sixth bin.

Maximum encoder memory usage is essentially linear in M. It is equal to M plus a constant when the
coder design has the property that each codeword in any given bin produces at least one bit in the bin
with the next lower index (coder design C5, for example, has this property).

V. A Unifying Generalization

We’ve seen three types of encoders—basic, partitioning, and sliding source window—that differ in the
rules specifying when source bits can be loaded into encoder memory. We now describe a generalized
encoding technique that encompasses all three of these encoders and includes other encoders as well by
allowing more general schedules for loading source bits. Alternative rules for loading source bits can allow
the decoder to check for flush bits less frequently (and thus increase decoding speed), and may allow more
efficient use of encoder memory.

We use a function w to describe a schedule for loading source bits, where w(i) equals the index of the
wave that must be completed before loading source bit b;. Obviously source bits must be loaded in order,
and a source bit cannot be encoded until it is loaded into encoder memory, so we require that w(i) is
nondecreasing and w(i) < 4, but apart from these restrictions, w can be an arbitrary function of i. In
fact, w can also be a function of source bits b;_1, b;_o, - - - since the encoder and decoder both have access
to the values of these bits when w(i) needs to be computed. In particular, we could use the values of
previous source bits to calculate or estimate memory usage and load bits in a way that keeps encoder
memory nearly full. Such a technique would achieve better compression performance by making more
efficient use of encoder memory, although decoding might be slower.

Example 2. The following choices of w illustrate how this generalization encompasses various encoding
techniques (recall that source bits are numbered beginning with index 1):

(a) The basic encoder uses w(i) = 0 for all ¢ since all source bits are loaded into memory
before encoding.

(b) The partitioning method loads M source bits at a time, which corresponds to

w(i) = M - V;IIJ

(c¢) The sliding source window encoder uses w(i) = max(i — M, 0).

(d) An encoder that initially loads M source bits into memory, and then encodes groups of
K source bits at a time, can be obtained using

w(i) = max (K {%J ,0) A

An arbitrary schedule for loading source bits is accommodated by modified versions of the sliding
source window encoder and decoder. In the modified encoder, as in the sliding source window encoder,
flush bits cannot be added if the encoder is permitted to load another source bit. But now the function

10

w(i) determines whether a source bit can be loaded—if the highest priority bit in memory has freshness
index larger than w(4), then we can load source bit b;.

The modified decoder is similar to the sliding source window decoder: before decoding source bit b;, all
bits with a wave number less than or equal to w(i) are flush bits and should be deleted. In the encoder,
source bit b; is not loaded until wave w(i) is complete, so the encoder did not have access to source bits
with index less than or equal to w(i) while encoding bit b;. In part (d) of Example 2 above, this means
we need only check for flush bits before decoding source bit b; if i = M + 1 + jK for some integer j > 0.

For a given w, the maximum source window size (i.e., the maximum number of source bits that can
reside in encoder memory at a time) is M = max;{¢ — w(i)}. This maximum must also be taken over all
possible source sequences when w is allowed to depend on the values of source bits.

VI. Memory-Efficient Non-Recursive Encoding

For the special case of non-recursive interleaved entropy coding, memory-efficient encoding can be ac-
complished using a substantially different—and simpler—technique, described in [2,3]. Instead of limiting
the number of source bits considered by the encoder at one time, we limit the number of codewords and
partial codewords that can reside in encoder memory at one time. For completeness we present some
details of the technique here.

In non-recursive interleaved entropy coding, the encoder can build up codewords from source bits one
bit at a time. The encoder contains a list of codewords and prefixes of codewords (rather than individual
bits), implemented as a circular buffer with room for some maximum number of words. When a source
bit arrives, if there is a partial codeword for the bit’s bin, the bit is appended to the word. Otherwise, the
bit begins a new word at the end of the list. Here we can treat the first bin like the other bins, with each
source bit comprising a complete codeword. When the codeword at the beginning of the list is complete,
the encoder outputs the corresponding output bits, and the codeword is removed from the list. If the
new front position of the list contains a complete codeword, it is also processed, and so on. If the buffer
becomes full, we add flush bits to complete the (necessarily partial) codeword at the front of the list, so
that the resulting codeword can be processed.

The decoder reconstructs codewords in the same order that they formed in the encoder’s list. Thus,
the decoder can easily keep track of the position that each codeword occupied in the encoder, and in
fact this is easier than keeping track of wave numbers in the recursive case. Therefore, the decoder
can determine when the encoder added flush bits and can remove these bits accordingly. With “wave
numbers” replaced by “word numbers,” any of the techniques of Section III can be used to check for flush
bits, and the generalized schedules of Section V can be adapted as well. In particular, the equivalent of
the wave number bound method allows efficient flush-bit detection and a generalized schedule that adds
flush bits only at certain points (analogous to part (d) of Example 2 in Section V) could achieve the same
result.

VIl. Conclusion

We have modified the encoding and decoding techniques presented in [1] in a way that allows memory-
efficient encoding. The new techniques offer improved compression performance compared to the simpler
alternative of partitioning long source sequences into segments of manageable size. The key to memory-
efficient encoding is the addition of flush bits in a way that can be tracked by the decoder and that
limits the delay in waiting for complete codewords to be formed. We have described an encoder called a
sliding source window encoder that accomplishes this by considering a limited number of source bits at
one time. We have described the corresponding decoder and identified efficient new techniques that allow
the decoder to identify flush bits; these techniques are also useful in the more straightforward case of

11

non-recursive interleaved entropy coding. We presented a generalization of the encoding technique that
encompasses the basic encoding method, sliding source window encoding, and other techniques as well.

A number of directions for future research are suggested by this work. These include evaluating the
encoding and decoding speeds of our new techniques and their variations, and determining a simple
method of computing the memory requirement as a function of M for an arbitrary coder design. We
observe that in general the amount of memory used during encoding may still be substantially lower
than the amount of memory that must be reserved; thus, the prospect exists of producing an even more
memory-efficient encoder.

References

[1] A. B. Kiely and M. Klimesh, “A New Entropy Coding Technique for Data Com-
pression,” The InterPlanetary Network Progress Report 42-146, April-June 2001,
Jet Propulsion Laboratory, Pasadena, California, pp. 1-48, August 15, 2001.
http://ipnpr.jpl.nasa.gov/progress_report/42-146 /146 G.pdf

[2] P. G. Howard, “Interleaving Entropy Codes,” Proc. Compression and Complexity
of Sequences 1997, Salerno, Italy, pp. 4555, 1998.

[3] F. Ono, S. Kino, M. Yoshida, and T. Kimura, “Bi-Level Image Coding with
MELCODE—Comparison of Block Type Code and Arithmetic Type Code,”
Proc. IEEE Global Telecommunications Conference (GLOBECOM ’89), Dallas,
Texas, pp. 0255-0260, November 1989.

12

Appendix
The Wave Number Bound Method

In this appendix we prove Theorem 1 of Section III, which states that under the wave number bound
method the number of times the bound must be computed is at most B/M times the number of source
bits, where B is the number of bins and M is the sliding source window size. We also show that the
fraction of source bits for which a bound computation occurs can approach B/(M + 1).

Proof. We say that the lower bound on the wave number is “triggered” by bin n at “time” t if the
bound is recomputed just before decoding the tth source bit and this recomputation causes the new bound
to be equal to the wave number of the bits in bin 7 at this time. In other words, after removing any flush
bits, bin 7 contained the oldest bits. (Note that the bound might be triggered by more than one bin at
a given time.)

Suppose that the sequence of times at which recomputations occur includes times ¢1,---,tpy1, where
ty < --- <tpy1. For each i, let n; be a bin that triggered the bound at time ¢;, and let a; be the resulting
new bound.

The uncoded bin never contains flush bits and can never trigger a recomputation. Thus, the n; can
take on B — 1 possible values, and among 7, ---,np there must be a repeated value. Let r; and ry be
indices in {1,---, B} for which n,, = n,, and 71 < ra.

At time t,,, the wave number of bin 7,, was a,,, and all new bits arriving in bin 7,, at time ¢,, or
later will have a wave number of at least ¢,,. Therefore, since a,., is the wave number of bin 7,, at time

tr,, we must have either a,, > t,, or a,, = a,,. But a,, > a,,, since each recomputation of the bound
must increase it; therefore,

Qry = by
Also observe that
tr2+1 Z a’T’Q + M

since otherwise it would not have been necessary to recompute the bound at time ¢,,,1.

Combining inequalities yields

tpat 2 togry = apy + M >ty + M >t + M

M window. Noting also that no recomputations can occur for the first M source bits, we see that the
total fraction of source bits for which a recomputation occurs cannot exceed B/M. O

or simply tg4+1 > t1 + M. In other words, at most B recomputations can occur in a given length

We now show by means of an example that the fraction of source bits for which a recalculation occurs
can approach B/(M + 1), assuming that M > 2B — 2. For this example, we describe a sequence of
codewords arriving in the bins, where for each codeword we specify the bin it arrives in, the wave number
(“start time” of the codeword), and the time at which the last bit of the codeword is used (“end time”).
No flush bits are added in this example.

13

The sequence of codewords is indexed by ¢ starting at ¢ = 0. Let codeword i have start time
1+ [i/B](M + 1) + 2(i mod B) and end time equal to M plus the start time of codeword i — 1. (We let
the end time of codeword 0 be 2B — 2.) Let the bin indices of the sequence of codewords cycle through
{2,--+, B} in any fixed order. When B = 4 and for bin index order 2, 3, 4, the beginning of this sequence
is as shown in Table A-1.

Table A-1. Bin indices, start times, and end times
for the codeword sequence example.

i Bin Start End

0 2 1 6
1 3 3 M+1
2 4 5 M+3
3 2 7 M+5
4 3 M +2 M+7
5 4 M+ 4 2M +2
6 2 M+6 2M +4
7 3 M +8 2M +6
8 4 2M +3 2M +8
9 2 2M + 5 3M +3
10 3 2M + 7 3M +5
11 4 2M +9 3M +7

For general B, our sequence could occur, for example, if the coder design maps all bits into bin 1 (i.e.,
is non-recursive) and the codewords received all contain 2 source bits. The first of the source bits would
be returned at the start time of the codeword, and the second would be returned at the end time of the
codeword. The remaining source bits can be assumed to all be from bin 1. Many other scenarios are
possible, including some with recursive coder designs.

It is straightforward to check that for ¢ > B — 1, the start time of codeword i is equal to one plus
the end time of codeword i — (B — 1), which is the previous codeword in the same bin. Thus, our list is
consistent in that there is no overlap of codewords in the same bin.

For all of the codewords beyond codeword 0, a recalculation occurs at the end time of the codeword
and results in the new bound being equal to the start time of the codeword. (This is easily verified by
induction.) Thus, after retrieving source bit 2B — 2 + k(M + 1), the number of recalculations that have
occurred is kB, or in other words the fraction of source bits for which a recalculation was performed is

B
M+1+ (2B —-2)/k

This quantity approaches B/(M + 1) as k becomes large.

14

